Modeling and optimal design of a linear induction motor for railway system (in French)

Authors:
Gong Jinlin
Ecole Centrale de Lille, France, 2012

Abstract:
This thesis focuses on studying the performance of the linear induction motor using the method of finite element analysis, and the optimal design on a time-costly model. The finite element method is used to study the performance of the linear induction motor. Firstly, the 2D finite element model (FEM) is constructed, which allows taking into account the longitudinal end effects. The transverse edge effects are taken into account within 2D model by varying the conductivity of the secondary and by adding the inductance of the winding overhang. Secondly, a coupled model between the magnetic and thermal 3D FEM is built which allows taking into account both the end effects and the temperature influence. Finally, a test bench is realized to validate the models. The comparison between the different models shows the importance of the coupled model. Optimal design using finite element modeling tools is a complex task and also time-costly. The surrogate model-assisted optimization strategies are studied. The direct surrogate model-assisted optimization and the Efficient Global Optimization are compared. A three-level output space-mapping technique is proposed to reduce the computation time. The optimization results show that the proposed algorithm allows saving a substantial computation time compared to the classical two level output space-mapping. Using the 3D FEM, a multi-objective optimization with a progressive improvement of a surrogate model is proposed. The proposed strategy evaluates the FEM in parallel. A 3D Pareto front composed of the finite element model evaluation results is obtained, which allows taking the decision for the engineering design.

Full paper is available here (this link opens a new window)